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ABSTRACT

In the analysis of causal effects in non-experimental studies, conditioning on observ-
able covariates is one way to try to reduce unobserved confounder bias. However, a
developing literature has shown that conditioning on certain covariates may increase
bias, but the mechanisms underlying this phenomenon have not been fully explored.
We contribute to the literature on bias-increasing covariates by first introducing a way
to decompose omitted variable bias into constituent parts: bias due to an unobserved
confounder, bias due to excluding observed covariates, and bias due to amplification.
This leads to two important findings. First, we identify the fact that the popular ap-
proach of adding fixed-effects can lead to bias amplification, even while they are not
instruments. Instruments have been the focus of the bias amplification literature to
date. That fixed effects might amplify (or otherwise increase) bias may be unexpected
because fixed effects are often thought to be a convenient way to account for any and
all group-level confounding. Second, we introduce the concept of bias unmasking and
show how it can be even more insidious than bias amplification in some cases. After
introducing these new results analytically, we use constructed observational placebo
studies to illustrate bias amplification and bias unmasking with real data. Finally, we
propose a way to add bias decomposition information to sensitivity analysis graphical
displays to help practitioners think through the potential for bias amplification and bias
unmasking in actual applications.
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1. INTRODUCTION

In the analysis of causal effects in non-experimental studies the key assumption necessary for

unbiased estimation is that all confounders (pre-treatment variables that predict both treatment

assignment and the outcome) have been measured. In the social science literature this assumption

is often referred to as “selection on observables” (Heckman and Robb 1985, 1986), “conditional

independence” (Lechner 2001) or “ignorability” (Rubin 1978), and it is well-known that violation

of this assumption leads to biased inference. However it is typically implausible to believe that we

have measured all confounders, raising the question as to which of the available covariates should

be adjusted for (conditioned upon) in practice.

Advice in the extant literature on which variables to condition on are contradictory. One recom-

mendation has been that conditioning on more, rather than fewer, available (pretreatment) covari-

ates is the best way to minimize bias associated with unobserved sources of heterogeniety (Rubin

2002; Rosenbaum 2002). Another recommendation says that those variables that are related to the

treatment assignment mechanism should be included in the analysis (D’Agostino, Jr. 1998). Still

other advice is to choose covariates based on their relationship to the outcome, rather than to the

treatment (Brookhart et al. 2010; Austin et al. 2007; Hill 2007a).

There are, however, two notable classes of covariates that most agree should be excluded from

the set of conditioning covariates. These are bias inducers and bias amplifiers. Bias inducers

include posttreatment variables such as mediators and colliders (Cole et al. 2010; Pearl 2000;

Schisterman et al. 2009), and a particular group of pretreatment covariates (pretreatment colliders

that lead to M-bias or butterfly-bias) (Ding and Miratrix 2014; Sjlander 2009; Pearl 2009). Such

bias inducers may not be troublesome in practice, however, either because they can be identified

for exclusion, as is sometimes the case for posttreatment variables, or because the bias they induce

tends to be small (Ding and Miratrix 2014; Liu et al. 2012; Greenland 2002).

Bias amplifiers have received recent attention as variables that should be excluded from the
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conditioning set (Pearl 2010; Wooldridge 2009; Bhattacharya and Vogt 2007; Pearl 2011; Myers

et al. 2011; Wyss et al 2014). These covariates cannot induce bias where there is none, but they

increase bias by modifying bias that is due to an unobserved confounder. Instruments, variables

related to treatment but not directly causing the outcome, are the canonical example of a bias

amplifying covariate. Conditioning on an instrument can hurt but can never help. On the one hand,

this may seem like a trivial concern because it is unclear under what circumstances a researcher

would be unaware that a variable was a true instrument for their treatment variable. However,

even imperfect instruments can amplify bias (cf. Pearl 2010) and, as we will show below, even

noninstruments can amplify bias.

In sections 2 and 3 we show how omitted variable bias may be decomposed into several con-

stituent parts: bias attributable to the unobserved confounder, bias due to omitting observed co-

variates, and bias due to amplification. Doing so allows us to make two contributions regarding

bias increasing covariates. The first, in section 4, we show that fixed effects can act as pure bias

amplifiers. Fixed effects are not instruments, which have been the focus of the bias amplification

literature to date. Moreover, fixed effects are often thought to be useful for absorbing unmea-

sured group-level confounding, so demonstrating that they can increase bias in general may be

unexpected. The second contribution is the introduction of the conept of bias “unmasking”, which

helps to frame why even variables that do not amplify bias per se may still lead to net increased

bias. In sections 5 and 7, we examine two case studies where the causal effect is known and where

confounding is likely to be present to estimate and decompose biases into the constituent parts. In

one case study amplification is a major contributor to net bias. In the other, the inclusion of covari-

ates leads to a larger net bias due to “unmasking” of unobserved confounder bias. These examples

reinforce prior advice to avoid inadvertently controlling for instruments when trying to infer causal

effects from data where the causal variable was not randomized. They also illustrate why applied

researchers might be concerned about arbitrary use of fixed effects in non-experimental studies. In

section ??, we provide a suggested modification to sensitivity analysis graphical displays to help
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practitioners think about the potential for amplification and unmasking.

Overall, we argue that none of the extant recommendations for the practice of identifying a

conditioning set of covariates provide much help to researchers in light of our analytic and empir-

ical analyses. In particular, we demonstrate that the common advice that inclusion of fixed effects

is a low-risk strategy to reduce bias may be misguided1. We provide some assistance by describing

the potential role of sensitivity analysis in illuminating which variables might act as bias amplifiers

or bias unmaskers. This approach does require some prior information about the nature of the

unobserved confounder, suggesting that researchers must bring substantive knowledge to the table

when determining whether a covariate should be included.

2. WHETHER TO CONDITION ON X

In this section we will establish the conditions under which a researcher would want to condition

on a set of covariates, X , in estimating the effect of a treatment, Z, on an outcome, Y .

Mathematically describing the magnitude of bias incurred by failure to satisfy the selection on

observables assumption requires additional assumptions about the relationships between variables.

We derive our results using the linear model as has been done in related work (Ding and Miratrix

2014; Pearl 2010; Clarke 2005, 2009) and which has the advantage of tying this work into more

general results regarding omitted variable bias.2

To proceed, consider a linear model relating an outcome, Y , and a treatment, Z,

Y = Zτ +Xβy + Uζy + εy. (1)

1For a distinct problem with use of fixed effects for causal inference see Sobel (2006).
2While we focus on the linear model, we expect that many of the results hold, broadly speaking, for GLM models.

However, GLM models come with a host of problems of their own with respect to bias. For example, coefficients
from unadjusted and covariate adjusted logistic regression models are not comparable (VanderWeele and Arahc 2011;
Freedman 2008; Breen et. al. 2013), a problem sometimes referred to as “noncollapsibility” (cf. VanderWeele 2015).
Therefore, a lengthy discussion of the bias of adjusted and unadjusted GLM estimators is beyond the scope of this
paper.
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Here X is a matrix of observed covariates, and U is an unobserved confounder. As in Carnegie et

al. (2014a) and Imbens (2003) we make the simplifying assumption that U ⊥ X . We can justify

this assumption by conceptualizing U as the portion of the unobserved covariate that is orthogonal

to the observed covariates. For the sake of clarity, and without loss of generality, we also assume

that E [Z] = 0.

Next we derive bias both for the case where X is omitted from the conditioning set and when

it is included in the conditioning set so that the two biases might be compared and show how to

decompose the biases into constituent parts to facilitate the comparison. To do so, we refer to

Appendix A where we derive a (well known) generic expression for omitted variable bias.

First suppose one calculates the unadjusted estimate of τ in equation (1) by simply regressing

Y on Z. Substituting S = [Z] and O = [X U ] in (14) in Appendix A yields an expression for the

omitted variable bias of the crude estimator,

Bias
[
τ̂Y|Z
]
=E
[
(Z ′Z)

−1
Z ′Xβy + (Z ′Z)

−1
Z ′Uζy

]
=χ+ υ (2)

where χ ≡ E
[
(Z ′Z)−1 Z ′Xβy

]
is the bias due to omitting X and υ ≡ E

[
(Z ′Z)−1 Z ′Uζy

]
is the

bias due to omitting U . The symbols χ and υ are used as a shorthand to signify the constituent

parts of the bias.

Now suppose we are interested in the bias when estimating τ in a new model that includes X

in the conditioning set, S. In that case, substitute S = [Z X] and O = [U ] in (14) in Appendix A.

The bias can be written in partitioned notation as follows:

Bias

 τ̂Y|ZX

β̂y

 = E


 Z ′Z Z ′X

X ′Z X ′X


−1  Z ′

X ′

Uζy
 . (3)
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Using the inverse of the partition matrix and selecting off the element that corresponds to the

coefficient on the causal variable Z (steps in Appendix A), write

Bias
[
τ̂Y|ZX

]
= E

[(
Z ′Z − Z ′X [X ′X]

−1
X ′Z

)−1
Z ′Uζy

]
=̇

(
1

1− r2Z|X

)
υ

= υ +

(
r2Z|X

1− r2Z|X

)
υ

= υ + α (4)

where r2Z|X is the coefficient of determination, R-squared, in the regression of Z on X and α ≡(
r2
Z|X

1−r2
Z|X

)
υ. Note in the second line of (4) the dot above the equal sign, signifying an approximate

equality. The approximation follows from the fact that the ratio
(

1
1−r2

Z|X

)
has been placed in

front of the expectation operator in the term υ = E [(X ′X)−1X ′Uζy]. The term
(

1
1−r2

Z|X

)
can be

referred to as the amplification factor; importantly this term is identified and thus can be estimated

by the researcher. The amplification factor is particularly problematic if X accounts for a great

deal of variation in Z as noted by Pearl (2010). The term α ≡
(

r2
Z|X

1−r2
Z|X

)
υ gives the change in

bias attributable to amplification, call it the net amplification bias.

A careful comparison of (4) and (2), reveals two key insights about adding X to the condi-

tioning set of covariates. First, note the bias term in (2) associated with omitting X , namely,

χ ≡ E
[
(Z ′Z)−1 Z ′Xβy

]
. This term is absent in (4) because X is adjusted for in this model.

Second, the bias due to omitting U is modified from E
[
(Z ′Z)−1 Z ′Uζy

]
in (2) to become

E
[(
Z ′Z − Z ′X [X ′X]−1X ′Z

)−1
Z ′Uζy

]
in (4). The difference between these two terms results

in the appearance of−Z ′X [X ′X]−1X ′Z in the denominator, a term which is necessarily less than

or equal to zero because it is (-1 times) a quadratic form with positive definite matrix [X ′X]−1

(cf. Greene 2000, sections 2.8 and 2.8.1). Therefore, except if the term −Z ′X [X ′X]−1X ′Z is
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zero (i.e., X is not correlated with Z), it shrinks the denominator in (4) relative to (2) resulting in

amplification of the bias due to the unobserved U .

It is useful at this juncture to consider why instrumental variables (Angrist et al. 1996) have

been a particular focus of attention in discussing bias amplifiers (Pearl 2010; Wooldridge 2009;

Bhattacharya and Vogt 2007). When X is an instrument, βy = 0 by definition. Therefore the bias

due to omittingX , χ, in (2) equals 0 and there can be no benefit due to removing χ bias when going

from (2) to (4) and the only change in bias is an increase due to amplification, α. In that sense,

instruments can be referred to as pure amplifiers. When X is a pure amplifier it is necessarily true

that (4) is larger than (2).

However, amplification is only part of the story about the change in bias when going from an

unadjusted to adjusted estimator. Whether conditioning on X increases or decreases the net bias

depends on the magnitude of (2) relative to the magnitude of (4). Formally, a set of covariates, X ,

can be said to be net bias reducing only when

∣∣∣E [(Z ′Z)−1 Z ′Uζy + (Z ′Z)
−1
Z ′Xβy

]∣∣∣ > ∣∣∣∣E [(Z ′Z − Z ′X [X ′X]
−1
X ′Z

)−1
Z ′Uζy

]∣∣∣∣ .
Or write,

|υ + χ| > |υ + α| .

If υ (the bias due to omitting U ) and χ (the bias due to omitting X) have the same sign then this

implies that for X to be bias reducing

|χ| > |α| .
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When υ and χ have opposite signs the requirement for X to be bias reducing is

|χ| > |2υ + α| .

Clearly, conditioning on X can be net bias increasing in cases where the bias due to amplifi-

cation, α, is relatively large. However, conditioning on X can be net bias increasing even when

r2Z|X = 0 (and, hence, α=0) if the bias due to omitting U , υ, and the bias due to omitting X , χ,

have opposite sign and |χ| < 2 |υ|. In that case, because χ has an opposite sign to υ but similar

magnitude, it can be said to be masking (or canceling) υ in (2). In that case the χ is a “good” bias

because it cancels with υ, rendering the net bias of the unadjusted estimator closer to zero than that

of the adjusted estimator.

That bias due to omitting a known covariate X can be “good” bias (because it masks bias due

to the unobserved confounder) is troubling because it implies that even when X is known to be

predictive of Y , including it in the conditioning set of covariates may increase overall bias. To

know whether removing χ bias improves net bias or not, one must know something about υ which

is not identified. In light of this observation, it is clear that none of the existing recommendations

for practice provide complete guidance on whether to condition on a covariate, or set of covariates

(as with fixed effects), or not.

3. WHETHER TO CONDITION ON X1 GIVEN THAT X2 WILL BE INCLUDED IN THE

CONDITIONING SET

In this section we generalize the above results to the case where we want to know whether to

include all of the covariates in X in the conditioning set given that some of them will be included

in the conditioning set. Notationally, first partition the matrix of covariates such that X = [X1X2].

Now assume that X2 will certainly be in the conditioning set and the question is whether to also
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include X1 in the conditioning set. As we show, the results for bias amplification are analogous to

the simplified case above.

The model can now be written,

Y = Zτ +X1β
y
1 +X2β

y
2 + Uζy + εy (5)

where the U is independent of both X1 and X2. Omitting X1 from the conditioning set leads to the

bias

Bias
[
τ̂Y|ZX2

]
=̇

(
1

1− r2Z|X2

)
E
[
(Z ′Z)

−1
Z ′X1β

y
1 + (Z ′Z)

−1
Z ′Uζy

]
=

(
1

1− r2Z|X2

)
[χ1 + υ]

=χ∗ + υ∗ (6)

where υ∗ ≡
(

1
1−r2

Z|X2

)
υ, likewise χ∗ ≡

(
1

1−r2
Z|X2

)
χ1 and r2Z|X2

is the R-squared in the regres-

sion of Z on X2. As before, the dot above the equal sign in the first line of equation (6) is due to

the fact that
(

1
1−r2

Z|X2

)
is outside the expectation operator.

Including X1 in the conditioning set leads to the bias

Bias
[
τ̂Y|ZX1X2

]
=̇

(
1

1− r2Z|X1X2

)
υ∗

= υ∗ +

(
r2Z|X1X2

− r2Z|X2

1− r2Z|X1X2

)
υ∗

= υ∗ + α∗ (7)

where r2Z|X1X2
is the R-squared in the regression of Z on X1 and X2. Here the net amplification

bias, α∗ ≡
(
r2
Z|X1X2

−r2
Z|X2

1−r2
Z|X1X2

)
υ∗, is defined only slightly differently from α above and the amplifi-
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cation factor can be written
(

1−r2
Z|X2

1−r2
Z|X1X2

)
.

So, conditioning on X is bias reducing when

|υ∗ + χ∗| > |υ∗ + α∗| .

When υ∗ and χ∗ have the same sign the requirement is that |χ∗| > |α∗|. When υ∗ and χ∗ have

different signs the requirement is that |χ∗| > |2υ∗ + α∗|.

These results are analogous to the simpler case of a single block of covariates, X , considered

in the section above.

4. FIXED EFFECTS AS PURE BIAS AMPLIFIERS

As mentioned above, pure bias amplifiers such as instruments can be particularly problematic

because there cannot be any benefit to removing χ from the bias equation since χ ≡ 0. In this

section we identify the conditions where fixed effects can be pure amplifiers, amplifying bias but

providing no net improvement in bias due to removing χ bias.

To consider fixed effects under the rubric presented above simply imagine X as a matrix of

dummy variables. Starting from this point of view, the term χ ≡ E
[
(Z ′Z)−1 Z ′Xβy

]
in (2) can be

written χ ≡ E
[∑K

k=1 (Z
′Z)−1 Z ′Xkβ

yk
]

where Xk is the column vector from X associated with

the kth dummy variable.

Now consider the case where fixed effects are pure amplifiers – when the term

χ ≡ E
[∑k

k=1 (Z
′Z)−1 Z ′Xkβ

yk
]
≡ 0. Trivially, this term can be zero if the terms βyk are all zero,

i.e., if the fixed effects are instruments, but it can also be zero because the positive and negative

terms sum to zero.

When might those positive and negative terms net out to zero? To develop an intuition, consider
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a model for the treatment, Z,

Z =
K∑
k=1

Xkβ
zk + Uζz + εz (8)

where U is defined as above. Now make the assumption, for the sake of simplifying the exposition,

that Z has unit variance (in addition to having mean zero) and that the size of the K groups

(associated with the fixed effects) are equal and thus E[Xk] ≡ 1/K. Then we might write for the

ith dummy variable

(Z ′Z)
−1
Z ′Xk = Cov(Xk, Z)

= Cov(Xk,
∑
j

Xjβ
zj + Uζz + εz)

=
1

K
βzk − 1

K2

K∑
j=1

βzj (9)

So,

χ ≡
K∑
k=1

(Z ′Z)
−1
Z ′Xkβ

yk =
K∑
k=1

Cov(Xk, Z)β
yk

=
K∑
k=1

(
1

K
βzk − 1

K2

K∑
j=1

βzj

)
βyk

=
1

K

K∑
k=1

βzkβyk − 1

K2

K∑
k=1

(
K∑
j=1

βzj

)
βyk

= Ekβ
zkβyk − EkβzjEkβyk

= Covk
(
βzk, βyk

)
(10)

where use the notationCovk to denote that covariance is to be taken across theK groups. Likewise,

Ek is expectation across the K groups.

The derivation shows that fixed effects can be pure bias amplifiers when Covk
(
βzk, βyk

)
= 0.
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One way to interpret this condition is that the group level structure in Y does not covary with the

group level structure in Z.

At first look, having ascertained this result would seem to provide some encouragement. If the

expression in the last line of (10) can be estimated, then the fixed effects can be avoided when they

are pure bias amplifiers (or close to it). Sadly, the term cannot be estimated unbiasedly, or even

meaningfully bounded. We can see this by examining Bias[β̂y] in (17) in the Appendix A. Instead,

the usual regression estimator β̂yk converges in probability to

βyk − βzk
(
Z ′Z − Z ′X [X ′X]

−1
X ′Z

)−1
Z ′Uζy. (11)

Asymptotically then, a quantity that one might estimate is

Ĉovk
(
βzk, βyk

)
= Covk

(
βzk, β̂yk

)
= Covk

(
βzk, βyk − βzk

(
Z ′Z − Z ′X [X ′X]

−1
X ′Z

)−1
Z ′Uζy

)
= Covk

(
βzk, βyk

)
− Vk

(
βzk
) (
Z ′Z − Z ′X [X ′X]

−1
X ′Z

)−1
Z ′Uζy

= Covk
(
βzk, βyk

)
− Vk

(
βzk
)
(υ + α) (12)

where Vk(βzk) represents the variance of the values of βzk. Because (υ + α) may take on a poten-

tially wide range of values (12) is not a useful estimator of (10).3

5. CASE STUDY - THE EFFECT OF A GET-OUT-THE-VOTE INTERVENTION

In this section we repurpose the data from a study of the effect of prerecorded get-out-the-vote

phone calls on voter turnout (Shaw et al. 2012) to illustrate the phenomenon of bias amplification.

3That said, in a sensitivity analysis framework then, estimates for Covk
(
βzk, βyk

)
might be computed for posited

values of
(
Z ′Z − Z ′X [X ′X]

−1
X ′Z

)−1
Z ′Uζy – the bias term in (4).
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While the original study was a randomized experiment, we use the data to create a constructed

observational study.

In the original experiment units were assigned to a condition that received a prerecorded tele-

phone message encouraging them to vote or to a “no message” condition. In 1,597 precincts

randomization was at the precinct level. In another 5,838 precincts, households were randomly

assigned to treatment or control within precinct. We utilize the combined data file of 463,489

subjects.

Of interest in this study was the effect of contact on voter turnout. However, individuals who

were actually contacted may be different from those assigned to treatment who were not con-

tacted in ways that make them more likely to vote – for instance they were less likely to have died

or moved. Therefore, naively regressing turnout on contact is likely to violate the selection on

observables assumption and thus yield a biased estimate of the effect of contact. Instrumental vari-

ables regression, using treatment assignment as the instrument, is the typical remedy. However, we

are interested in illustrating bias so we do not use instrumental variables. Instead we deliberately

produce biased estimates. Moreover, we construct a placebo test, using turnout in prior elections

as outcome measures. Since we know that contact in 2006 cannot affect the turnout in prior elec-

tions, the true treatment effect must be zero. Estimates that deviate from zero thus reveal the bias

inherent in the estimator.4

Within the context of our constructed observational placebo study we can test whether two

types of variables act as bias amplifiers when included as covariates in the specified model. In

section 5.1 we consider treatment assignment (an instrument for contact) as a bias amplifier. In

section 5.2 we consider fixed effects for precinct as bias amplifiers. In both sections, estimates from

models that include the potential bias amplifier are compared to a simple regression of turnout on

4Another option would have been to use 2006 election turnout as the outcome and compare our observational
estimates to the experimental benchmark created by the instrumental variables estimate. The downside of this approach
is that this benchmark is itself noisy making it more difficult to precisely partition the bias. We prefer using the sharp
0 of our placebos tests as a comparison.
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contact to see which yields an estimate closer to the true parameter value of zero. If a model with

the potential bias amplifier yields an estimate that is further from zero, then this is evidence that the

potential bias amplifier caused a net increase in bias. Furthermore, because the causal parameter

is known to be zero, the constituent components of bias – χ, υ and α – are also identified. So for

each outcome we can see if the bias amplification is the cause of the net increase in bias.

5.1. Instrument as Bias Amplifier: Analysis and Results

Table 5.1, panel A shows the results for the analysis of the effect of the instrument, randomized

treatment assignment, on bias.

To describe the model specification we refer back to model (1). Y is an (n × 1) vector of

voter turnout indicators, Z is an (n× 1) vector of indicators for contact, X is an (n× 1) vector of

indicators of treatment assignment. U is the omitted confounder, assumed to have unit variance.

Each row of the table conducts the analysis for a different election. The column labeled ‘OLS’

presents the estimated coefficient on Z when regressing Y on Z only. The column labeled ‘Inst.’

presents the estimated coefficient onZ when regressing Y onX andZ. The column ‘Diff’ presents

the difference between the two estimates along with a bootstrapped standard error. In the columns

labeled υ, α, and χ the observed bias is decomposed into constituent parts.

For the general election 2004, the OLS estimate exhibits a bias of 0.138 while the model

controlling for treatment is much more biased at 0.478.5,6 The bias increase of 0.339 (an increase

of 244%) is entirely due to bias amplification, α. That there is essentially no contribution to the

bias through χ is expected given that instruments are known to be pure amplifiers. Not surprisingly

then, the unadjusted estimator is better than one that adjusts for an instrument.

Results in Table 5.1, Panel A, from other election years show substantively similar results. As

5The standard errors are so small as to suggest that the bias is measured with great precision.
6This is a tremendous amount of bias when one considers that the outcome is a binary, 0-1, outcome.
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in the case of the General Election 2004, adding the treatment indicator to the conditioning set of

covariates leads to increased bias. The increase in bias is attributable to bias amplification.

Results in Table 5.1, Panel B, repeat this analysis for models that include additional covariates

(turnout in prior elections) in the conditioning set. To describe this model specification we refer

back to model (5). Y and Z are defined as in Panel A. X1 is the instrument while X2 is an (n× k)

matrix of indicators for turnout in k prior elections. For the General 2004 election outcome, X2

included General 2002 turnout, General 2000 turnout, Primary 2004 turnout, Primary 2002 turnout

and Primary 2000 turnout. For the Primary 2004 election outcome, X2 included General 2002

turnout, General 2000 turnout, Primary 2002 turnout and Primary 2000 turnout. The column

labeled OLS presents the estimated coefficient on Z when regressing Y on Z and X2. In the next

column, labeled Inst., is the estimated coefficient on Z when regressing Y on Z, X2 and also X1.

The remaining columns give the difference between the two estimates and the bias decomposition.

Overall the biases are smaller in Panel B. For example, in Panel A, for General 2004 the bias

due to omitting U , υ, is estimated to be 0.140, or 14 percentage points. In Panel B, in contrast, the

bias due to omitting U , υ∗ is estimated to be 0.021 or two percentage points. However, we note

that 2.1 percentage points is still a substantively large bias. Moreover, the ratio α∗

υ∗
is similar to α

υ

above; bias due to amplification, α∗, is over 250% the size of the bias due to omitting U , υ∗.

5.2. Fixed Effects as Bias Amplifiers: Analysis and Results

Next, consider the implications for bias when adding fixed effects for precinct to the model specifi-

cation. Table 2 presents these results. In Panel A, referring back to model (1), Y and Z are defined

as the turnout indicators and contact indicators, as above, while X is now an (n × K) matrix of

dummy variable indicators for the K precincts.

Examining the results for 2004 election turnout, the fixed effects model is much more biased

than the model without fixed effects; when regressing Y on Z only the estimate is 0.138 com-
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A. No covariates OLS (SE) Inst. (SE) Diff (SE) υ α χ
General 2004 0.138 0.478 0.339 0.140 0.337 -0.002

(0.004) (0.004) (0.003)
General 2002 0.135 0.451 0.315 0.132 0.318 0.003

(0.005) (0.004) (0.004)
General 2000 0.131 0.451 0.32 0.132 0.318 -0.001

(0.005) (0.004) (0.004)
Primary 2004 0.094 0.285 0.192 0.084 0.202 0.01

(0.005) (0.004) (0.004)
Primary 2002 0.093 0.288 0.195 0.085 0.204 0.009

(0.004) (0.003) (0.004)
Primary 2000 0.113 0.37 0.257 0.109 0.261 0.004

(0.004) (0.004) (0.003)

B. With covariates OLS (SE) Inst. (SE) Diff (SE) υ∗ α∗ χ∗

General 2004 0.017 0.077 0.06 0.021 0.056 -0.005
(0.002) (0.002) (0.002)

Primary 2004 0.025 0.062 0.037 0.017 0.045 0.008
(0.005) (0.003) (0.004)

Table 1: GOTV Example with Instrument as Potential Bias Amplifier. Results are displayed for
estimates of the effect of the get-out-the-vote intervention on a number of pre-treatment outcomes
thus creating placebo tests. Column 1 reveals that linear regression results suffer from bias due to
selection on unobservables. Column 2 displays results from an extension of this analysis that could
exacerbate the selection bias by including the indicator for the initial randomization, which in this
case acts as an instrument. The third column presents the raw difference between columns 1 and
2. The final three columns decompose the bias into the constituent parts (see sections 2 and 3).

pared to 0.272 when regressing Y on Z and X . The net increase in bias is 97%. Here again,

the major factor in the bias difference is bias amplification, α. Fixed effects are essentially pure

bias amplifiers as evidenced by the fact there is a virtually no bias associated with omitting them

(χ =0.001).

Results in Table 2, Panel A from other election years show substantively similar results for

adding fixed effects to the model specification. Adding the fixed effects to the conditioning set of

covariates leads to increased bias due to bias amplification.

Panel B of Table 2 presents the analysis where additional covariates are included in the speci-

fication. Again, refer back to model (5) to see the model specification. Y and Z are specified as in
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Panel A. Here X1 is a matrix of dummy variables for precinct and X2 includes the prior election

turnout indicators as in the Table 1, Panel B.

Results again show that fixed effects have amplified bias. While the amount of bias starts off

lower for these models, the amplification factor is about the same, roughly doubling the bias of the

estimate.

A. No covariates OLS (SE) FE (SE) Diff (SE) υ α χ
General 2004 0.138 0.272 0.134 0.137 0.135 0.001

(0.004) (0.004) (0.004)
General 2002 0.135 0.257 0.123 0.129 0.128 0.006

(0.005) (0.004) (0.005)
General 2000 0.131 0.257 0.126 0.129 0.128 0.002

(0.005) (0.004) (0.004)
Primary 2004 0.094 0.172 0.077 0.087 0.086 0.007

(0.005) (0.003) (0.005)
Primary 2002 0.093 0.174 0.081 0.087 0.086 0.006

(0.004) (0.003) (0.004)
Primary 2000 0.113 0.217 0.104 0.109 0.108 0.004

(0.004) (0.004) (0.003)

B. With covariates OLS (SE) FE (SE) Diff (SE) υ∗ α∗ χ∗

General 2004 0.017 0.037 0.02 0.018 0.019 -0.001
(0.002) (0.001) (0.002)

Primary 2004 0.025 0.037 0.011 0.018 0.019 0.007
(0.005) (0.002) (0.005)

Table 2: GOTV Example with Set of Fixed Effects as Potential Bias Amplifier. The columns are
otherwise similar to those in Table 1.

6. CASE STUDY - THE EFFECT OF SELECTING A DISADVANTAGED VILLAGE

COUNCIL PRESIDENT

In the previous case study we demonstrated a situation where bias amplification resulted from

either adding an instrument or adding fixed effects to the conditioning set of covariates. This

amplification occurred whether or not there were additional conditioning covariates specified in the
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model. In this section we consider a case study that repurposes data from another study (Dunning

et al. 2013) to provide an example where bias amplification per se is not a major concern but where

fixed effects nonetheless lead to a large increase in net bias as the bias due to υ is “unmasked.”

The original paper examined the effect of having a village council president from a disadvan-

taged group (scheduled cast or scheduled tribe) on programmatic spending in India. In certain

locations in India, council seats are reserved for disadvantaged groups on a rotating basis. Villages

were assigned to have a reserved seat by first creating a list of councils within each district sorted

by size of the population of the target disadvantaged group. Then, councils above a certain cutoff

had their presidencies reserved for a disadvantaged group. In subsequent elections, the list was

rotated so that a different set of villages had reserved seats. The original study capitalized on the

list rotation scheme to conduct a quasi-experimental study. The analysis examined pairs of cities,

one just above a cutoff for having a reserved presidency and one just below, and compared the

difference in subsequent expenditures within pairs to examine whether councils with a reserved

seat allocated more to public expenditure programs targeting the poor.

6.1. Analysis and Results

We reuse these data in a way not intended by the original study in order to induce confounding

and study the resulting bias. We induce confounding by using the entire data set, not just the

quasi-experimental pairs. Including data from all villages introduces confounding because villages

higher on the list are not valid counterfactual cases for those further down given that they were

sorted by the population of the disadvantaged groups.

Next, because outcome data exist for a time period before the assignment of the treatment, we

were able once again to conduct a placebo test, whereby the effect of the treatment on the outcomes

in a prior time period could be analyzed.7 As above, since the treatment cannot affect outcomes

7We examined the “effect” of seats reserved in the 2007 election on outcomes from 2006. We also limited the data
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in the past, the true value of the parameter is known to be zero. Estimates from the data can be

compared to the true benchmark of zero and deviations from zero can be considered evidence of

bias.

Our analysis compared models with and without fixed effects for district for each of a number

of outcome measures. The estimates from the two models can be compared to see which is closer

to the true parameter value of zero. If the fixed effects model is further from zero, then this is

evidence that fixed effects cause a net increase in bias.

The outcome measures reflect seven government programs. Table 3 provides the names of the

programs. Outcomes are measured in thousands of rupies for the first five outcomes and in number

of latrines for the last two.

Reported in Panel A in the column labeled OLS in Table 3 is simply the naive non-adjusted

OLS estimate of the effect of a reserved council presidency on expenditures. Again referring back

to the model in (1), Y is an (n × 1) vector of expenditures (or number of latrines for the last

two outcomes), Z is an (n × 1) vector of indicators for treatment assignment (reserved council

presidency) and X is an (n× k) matrix of indicators of district (taluk).

In Panel A, Table 3 the column labeled OLS gives the estimated coefficient on Z when regress-

ing Y on Z only. The column labeled FE gives the estimated coefficient on Z when regressing Y

on Z and X .

Results in Panel A of Table 3 show that in three of seven cases (Ashraya, Latrines and Com-

munity Latrines), fixed effects appear to be moving estimates in the direction of zero. In two other

cases (IAY Scheme and Ambedkar), the estimates are moving away from zero but only slightly

so. In the case of MGNREGA, the result is a tossup with bias moving from 0.5 to -0.5 with the

addition of the fixed effects.

In the case of the Water Infrastructure, however, the fixed effects estimate is much further from

zero compared to the unadjusted estimate – 0.3 compared to -10.2. The bootstrapped standard

set to those villages that did not have a reserved presidency in 2005-2006 election years.
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A. No Covariates OLS (SE) FE (SE) Diff (SE) υ α χ

Ashraya 3.4 0.4 -3.0 0.4 0.1 3.0
(2.6) (1.9) (2.8)

IAY 33.4 -34.0 -67.5 -30.0 -4.1 63.4
(12.4) (8.9) (9.5)

Ambedkar -0.6 -0.8 -0.2 -0.7 -0.1 0.1
(0.6) (0.8) (0.2)

MGNREGA 0.5 -0.5 -1.0 -0.5 0.0 1.0
(3.5) (2.7) (1.0)

Water Infrastructure 0.3 -10.2 -10.5 -9.0 -1.2 9.3
(3.9) (4.0) (2.6)

Latrines -12.3 -5.7 6.7 -5.0 -0.6 -7.3
(5.8) (5.3) (4.0)

Community Latrines 0.2 0.1 -0.2 0.0 0.0 0.2
(0.2) (0.1) (0.1)

B. With Covariates OLS (SE) FE (SE) Diff (SE) υ∗ α∗ χ∗

Ashraya 1.1 1.5 0.4 1.3 0.2 -0.3
(1.7) (2.2) (1.8)

IAY -5.9 -10.0 -4.0 -8.9 -1.1 2.9
(7.5) (6.8) (5.4)

Ambedkar -0.8 -1.6 -0.8 -1.5 -0.1 0.6
(0.8) (1.5) (0.8)

MGNREGA -0.3 -0.6 -0.3 -0.6 0.0 0.3
(3.6) (3.2) (0.7)

Water Infrastructure 1.8 -4.1 -5.9 -3.6 -0.4 5.4
(3.5) (2.8) (1.8)

Latrines -5.1 -1.8 3.4 -1.6 -0.2 -3.6
(5.0) (5.5) (3.3)

Community Latrines 0.1 0.2 0.1 0.2 0.0 -0.1
(0.2) (0.2) (0.1)

Table 3: Village Council Presidency Example with Fixed Effects
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error suggests that this is a statistically significant difference.

In the last three columns of the table the observed biases are decomposed into constituent parts:

the bias due to the unobserved confounder (υ), the bias due to amplification when controlling for

X (α) and the bias due to omitting X from the conditioning set (χ). In decomposing this bias in

the case of Water Infrastructure we can examine what is happening; the bias due to omitting X is

roughly of the same magnitude as the bias due to omitting U but they have opposite signs. When

neither X nor U are controlled for in the model, the two biases cancel. In this sense, χ can be said

to be “good” bias which is masking υ in the unadjusted model. Bias amplification (α) plays a role,

albeit a smaller one, accounting for about 9% (-0.6/-6.7) of the move away from zero when going

from the unadjusted to the adjusted estimator.

Panel B of Table 3 shows the results for the model that includes several additional covariates in

the conditioning set. Referring to model (5), Y and Z are defined as in Panel A. X1 is a matrix of

dummy variables for district. X2 is an (n× 7) matrix of covariates including village expenditures

for the year, village population, population of scheduled caste members, population of scheduled

tribe members, size of the literate population, and size of the working population.

The values in the OLS column of Panel B, Table 3 are the estimated coefficient on Z when

regressing Y on Z and X2. The values in the FE column are the estimated coefficient on Z when

regressing Y on Z, X1 and X2.

Results confirm the main finding for Water Infrastructure. Including fixed effects in the model

unmasks the bias due to U , υ∗, making the total bias worse than when fixed effects are not included

in the model.

Interestingly, results in Panel B also show that when controlling for these other covariates, X2,

fixed effects actually increase bias for 6 out of 7 outcomes compared to 2 out of 7 in Panel A.

That additional covariates, X2, can alter whether fixed effects help or hurt further complicates the

question of what to include in the conditioning set for practitioners.
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7. A SENSITIVITY ANALYSIS FRAMEWORK

For the case studies that we have examined, we have identified situations where adding an instru-

ment or fixed effects to a set of conditioning variables increases bias. We can see this increase

in bias because we have constructed these studies as placebo tests, whereby the true parameter

value is known to be zero because the outcomes occurred before the treatment. However, our case

studies provide little consolation to practitioners who do not know the true value of the parameter.

The question we consider in this section is whether sensitivity analysis could be used to alert a

practitioner to the potential for increases in bias that we have demonstrated.

Sensitivity analysis has been proposed as a way to visualize the potential for an unobserved

confounder to bias results of an analysis (c.f. Imbens 2003; Rosenbaum and Rubin 1983; Clarke

2005, 2009). These approaches posit the attributes of an unobserved confounder, U , (for instance

its association with treatment and outcome) that would be sufficient (in addition to observed con-

founders) to satisfy the selection on observable assumption. Then they calculate the amount of bias

induced by failing to include U in the conditional set. Typically a full sensitivity analysis repeats

this exercise across a range of possible attributes for U and the results can be visually displayed.

If the estimated outcome changes very little except in the face of very extreme confounding by

U , the results are said to be insensitive to omitted confounder bias. Similar attributes of observed

covariates (for example their associations with treatment and outcome) can be used as benchmarks

to help understand the range of plausible attribute values for “typical” covariates in that setting.

We modify for our purposes a new sensitivity analysis package available in R, treatSens (Carnegie

et al. 2014b,a). The tool takes a dual-parameter approach similar to that of Imbens (2003). Similar

to Imbens (2003) it is a likelihood-based method, but one that generates candidate values of the

omitted confounder, U , drawing directly from the distribution of the confounder conditional on the

observed data. Then the model to estimate the treatment effect is fit with the simulated confounder,

U̇ .
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For a given combination of values of the sensitivity parameters (the coefficients on U in the Y

and Z models), ζz and ζy, an estimate of the treatment effect, τ , can be generated by first drawing

candidate values of U , denoted U̇ , from the distribution implied by the sensitivity parameters and

then estimating the parameters of the model regressing Y on Z, X1, X2 and U̇ using OLS. Call the

estimate of the coefficient on Z, τ̂(ζz, ζy). An average of this parameter estimate is taken across

20 draws of U̇ to reduce the uncertainty associated with the random draws from the distribution of

U . The algorithm proceeds by considering a range of possible values of ζz and ζy in a grid. Values

of τ̂(ζz, ζy) can be computed for each cell in the grid. The values in the grid can be represented

on a plot with axes ζz and ζy and contours drawn representing constant values of τ̂(ζz, ζy). The

contours of the figure can be labeled with the associated value of τ̂(ζz, ζy).

Note that for a given contour all of the bias terms in our equations are identified. Therefore, we

modify the sensitivity analysis currently available in the treatSens package to label each contour

in the grid with the values of υ∗, α∗, and χ∗, which are themselves implied by the values of

the sensitivity parameters, ζz and ζy, in addition to τ̂(ζz, ζy). Additionally, we place a contour

demarcating the area in which the fixed effects would increase bias, rather than decreasing it.

This modification allows the user to identify whether the areas of the parameter space where bias

increases due to the addition of an additional variable (or set of variables) represent manifestations

of the unobserved variable U that are plausible.

To calibrate the strength of the sensitivity parameters, we follow Imbens (2003) in plotting

the coefficient estimates on the observed covariates, X2, in the data. Given that the simulation

proceeds assuming U has unit variance, covariate values, X2, are standardized before estimating

the coefficients. Confounders with negative partial associations with the outcome are reverse-coded

so that they appear in the plot.

In the next section, we consider a sensitivity analysis plot for the voter turnout experiment. In

Appendix C, we also present a figure for the data on village expenditures in India.
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7.1. Sensitivity Analysis of GOTV Outcomes

The sensitivity analysis for the GOTV outcomes, in Figure 7.1, examines the potential for fixed

effects to bias the estimates for the effect of contact on General 2004 turnout, presented in Panel B

of Table 2.

Figure 1: Sensitivity Plot For Gerber et. al. Data

In interpreting Figure 7.1, consider the point (0.1, 0.05). It falls approximately on the line

labeled tau=-0.007. The figure implies that if ζz = 0.1 and ζy = 0.05, then the true effect would

be about -0.007. The line also provides the decomposed bias υ = 0.021, α = 0.023 and χ = 0.003.

From this we can conclude that, if ζz = 0.1 and ζy = 0.05, then the bias of the estimator without

fixed effects, υ+χ = 0.024, is smaller in magnitude than the bias when adjusting for fixed effects,
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υ + α = 0.044. The figure also alerts us that the net amplification bias, α, is relatively large in

this case being roughly 100% of the value of the omitted confounder bias, υ, throughout the figure.

As a helpful summary, the dashed line represents the threshold separating the region where fixed

effects are bias increasing from the region in which the fixed effects are bias reducing. Above and

to the right of the line, fixed effects are bias increasing; for all other values of ζz and ζy the fixed

effects are bias reducing.

The plus signs in the figure represent estimated coefficients on the (standardized) covariates,

X2, from the outcome and treatment models. As in Carnegie et al. (2014a) and Imbens (2003)

we interpret the plus signs as providing benchmarks that help the researcher assess the plausibility

of an omitted confounder with similar properties. For example the mark furthest from the origin,

at about (0.03, 0.19), is plotting the coefficients on the (standardized) indicator of turnout in the

2000 general election. One interpretation is that it is not unlikely that the sensitivity parameters

corresponding to the omitted confounder could have properties similar to that of the indicator

for turnout in the 2000 general election. Reassuringly, Figure 7.1 indeed would have provided a

researcher with a warning to be wary of fixed effects in this dataset.

In Appendix C, Figure 2, we examine a sensitivity plot for the Water Infrastructure outcome

from the (Dunning et al. 2013) data.

8. DISCUSSION

We have discussed the ways in which additional control covariates can increase bias, including

bias amplification and bias unmasking. In so doing, we identified a new special case of bias

amplification, in particular, when fixed effects amplify bias. The canonical example of a (pure)

bias amplifying covariate in the literature to date has been instruments. However, fixed effects

can be pure bias amplifiers even though they do not act as instruments and even though they

absorb heterogeneity in (and are causally related to) the outcome. We then presented a method of
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visualizing the conditions under which fixed effects are bias increasing (either via unmasking or

amplification).

The bias formulas provided in this paper help us to better understand the circumstances under

which covariates may act as bias amplifiers or bias unmaskers. Examining α ≡
(

r2
Z|X

1−r2
Z|X

)
υ

provides some reassurance that amplification may not be a major concern in practice. It is only

greater than the bias due to omitting U , υ, when r2Z|X > 1
2
. In words, X would have to account for

more than half of the variability in the assignment mechanism for amplification to have the bias to

be as as large as the bias due to the unobserved confounder.8 Fortunately r2Z|X is identified, a fact

that should give us some idea of whether bias amplification should be a particular concern.

However, concern over the phenomenon of bias unmasking should perhaps rival concern over

bias amplification. In the second case study, for example, the Water Infrastructure outcome reveals

that the bias due to omitting fixed effects, χ, can be large, but of opposite sign and similar magni-

tude compared to the bias due to the unobserved confounder, υ. Omitting both the fixed effects and

the unobserved confounder was preferable to adjusting for the fixed effects precisely because the

two biases counterbalanced one another in the unadjusted estimate. In practice, a researcher is un-

likely to know whether adjusting for covariates will unmask unobserved confounder bias. Similar

observations have lead to somewhat pessimistic assessment of observational analysis, for example,

in Clarke (2005) and Frisell et al. (2012) (but see also Clarke 2009).

Sensitivity analysis when considering unobserved confounders has been previously considered

elsewhere (e.g. Clarke 2009; Carnegie et al. 2014a; Imbens 2003). We proposed a simple modi-

fication to sensitivity plots aimed at increasing the information available about potential for bias

amplification. Plotting the bias decompositions (α, υ, and χ) on each of the contours may help

practitioners to consider bias amplification.

While better study designs are always the best way to address concerns over the dangers caused

8In the case where X is a matrix of dummy variables for group, this condition is equivalent to saying that the
intraclass correlation (ICC) is greater than 0.5.
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by failing to control for all potential confounders in an observational studies, the reality is that

many questions of interest are difficult or impossible to study using randomized experiments. In

the absence of controlled or natural experiments we need more tools to help applied researchers

make the best choices regarding how to perform their analyses. Thoughtful consideration about

the potential for bias amplification and unmasking should be part of this process. We hope that the

methodology presented in this paper can assist the researcher and makes these ideas more concrete.
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A. OMITTED VARIABLE BIAS

To define the bias, start with a generic linear model,

Y = Sβs +Oβo + εy, (13)

where S and O are matrices of specified and omitted covariates, respectively. With respect to the

error term, εy, assume E[εy|S,O] = 0.

Imagine the regression of Y on a set of covariates S only. This leads to the well known expres-

sion for omitted variable bias (for example see Greene 2000, p. 334)

Bias
[
β̂s
]
= E [S ′S]

−1
S ′Oβo. (14)

From this generic equation we can derive biases for particular sets of conditioning variables, S,

under an assumed model.

To derive omitted variable bias, first collect variables into two groups: omitted variables, O,

and included (specified) variables, S. Then we can write (in matrix notation) the general case
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Y = Sβs +Oβo + εy. Now substitute Y in [S ′S]−1 S ′Y and take the expected value.

E
[
β̂s
]
= E [S ′S]

−1
S ′Y

= E [S ′S]
−1
S ′ (Sβs +Oβo + εy)

= βs + E [S ′S]
−1
S ′ (Oβo + εy)

= βs + E [S ′S]
−1
S ′Oβo (15)

The last line follows from the fact that εy is independent of S and O. Therefore, the bais is the last

term,

Bias
[
β̂s
]
= E [S ′S]

−1
S ′Oβo. (16)

For the bias when conditioning on S = [Z,X] and O = [U ], use the inverse of the partition

matrix (cf. Greene 2000, section 2.6.3) to arrive at

Bias

 τ̂

β̂y


=E

 (
Z ′Z − Z ′X [X ′X]−1X ′Z

)−1 − [Z ′Z]−1 Z ′X (X ′X −X ′Z [Z ′Z]Z ′X)−1

− [X ′X]−1X ′Z
(
Z ′Z − Z ′X [X ′X]−1X ′Z

)−1 (
X ′X −X ′Z [Z ′Z]−1 Z ′X

)−1


×

 Z ′U

X ′U

 ζy

=E

 (
Z ′Z − Z ′X [X ′X]−1X ′Z

)−1
Z ′Uζy

− [X ′X]−1X ′Z
(
Z ′Z − Z ′X [X ′X]−1X ′Z

)−1
Z ′Uζy

 (17)

The last line follows from the fact that, by construction, U ⊥ X .
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B. ILLUSTRATIVE EXAMPLE

In this section we provide a simple numerical example to illustrate these biases. Suppose a re-

searcher has city level data and is interested in the effect of (standardized) per capita real income,

Z, on (standardized) proportion voting for the legislative party in power, Y . Suppose the propor-

tion voting for the party in power is also affected by whether or not the local mayor is a member

of the the same party (a reverse coat-tails effect) such that

Y =
1

2
Z +

1

2
U + εy

εy ∼ N

(
0,

1

2

)
.

where U is an indicator coded -1 if the mayor is not of the incumbent party and 1 if the mayor is

of the incumbent party and εy represents idiosyncratic factors. For simplicity say half of mayors

are members of the party in power.

Now in turn suppose the treatment, (standardized) per capita income, is affected by whether

the mayor is the same party as the party in power in the legislature (because the legislature rewards

districts with mayors of the same party with pork spending) and also by a development project

aimed at increasing the incomes of the poor that was randomly assigned to half of the cities. The

model for the treatment variable, Z (per capita income), is

Z =
1

2
X +

1

2
U + εz

εx ∼ N

(
0,

1√
2

)

where X is an indicator of whether the development project took place in the district (coded -1 for

not treated and 1 for treated).

Note that the example has been contrived such that E (Y ) = E (X) = E (Z) = E (U) = 0 and
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Variable Measure Scale
Y Standardized proportion voting for legislative party in power µ = 0, σ = 1
Z Standardized per capita income µ = 0, σ = 1
U Mayor member of party in power 1 if yes, -1 if no
X Development project in city 1 if yes, -1 if no

Table 4: Variables in illustrative example

V (Y ) = V (X) = V (Z) = V (U) = 1. Note also that X is an instrument because it was randomly

assigned to districts and only affects Y through its effect on Z.

Now suppose the researcher observes whether or not the development project occurs in each

city but neglects to collect data on the party of the mayors. The researcher estimates the effect

of (standardized) income per capita on (standardized) proportion voting for the political party in

power in two ways. The first approach is to regress Y (proportion voting for party in power) on Z

(per capita income). The second approach is to regress Y (proportion voting for party in power)

on both Z (per capita income) and X (development project instrument).

We can compute the bias components for these specifications. The bias due to omitting X

(development project instrument) is

χ ≡E
[
(Z ′Z)

−1
Z ′Xβy

]
=E [Cov(Z,X)0]

=0

as expected since X is an instrument. Meanwhile, the bias due to omitting U (mayor is of incum-
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bent party) is

υ ≡E
[
(Z ′Z)

−1
Z ′Uζy

]
=E
[

Cov(Z,U)
1

2

]
=E
[

Cov
(
1

2
X +

1

2
U + εz, U

)
1

2

]
=
1

4
V (U)

=0.25.

The bias due to amplification is

α ≡

(
r2Z|X

1− r2Z|X

)
υ

=

(
Cov(X,Z)2

1− Cov(X,Z)2

)
0.25

=
1/4

1− 1/4
0.25

=0.0833

So the bias when omitting the instrumental variable X will be (χ+ υ) = (0 + 0.25) = 0.25 while

the bias when includingX in the conditioning set will be (α+υ) = (0.0833+0.25) = 0.333. Thus

in this case the unadjusted estimator is less biased than the estimator that includes the instrument

in the conditioning set.

Why does this make sense intuitively? Omitting X is problematic because the development

project affects per capita income in a way that in turn affects the proportion voting for the party in

power; thus failing to control for X will create comparisons between units (cities) that only differ

on income because of the development project (and therefore aren’t truly comparable).

On the other hand, when we condition on X it sets up a comparisons within two groups:
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those that received the development project and those that did not. Since X and U are negatively

correlated conditional on Z (even though they are marginally uncorrelated), having a development

project in the city makes is more likely that the mayor is a member of the party in power among

precincts with higher per capita income and the reverse is true among precints with lower per

capita income. Thus making comparisons within categories of X merely serves to accentuate the

bias caused by omitting U .

The phenomenon of bias amplification is similar in the case of fixed effects in that conditioning

on this additional variable sets up within-group comparisons that induce a negative relationship

between U and X that exacerbates the bias.

C. SENSITIVITY ANALYSIS OF WATER OUTCOME

In the sensitivity plot, Figure 2, we examine the Water Infrastructure outcome. The interpretation

of the plot is the same as in the case of the GOTV study. The preponderance of covariates whose

benchmarking values fall in the bias-inducing region suggest that we should be concerned with

including fixed effects in our analysis. Conducting sensitivity analysis on this data would have

alerted the researcher for signs of potential trouble.
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Figure 2: Sensitivity Plot of Water Outcome
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